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It was recently shown that the size consistency of the energy implies that, for any
system with a rational number of electrons, the energy is given by the weighted average
of the two systems with the nearest integer numbers of electrons. Specifically, E[N+P/Q]
= (1−P/Q)E[N] + (P/Q)E[N+1]. This paper extends that analysis, showing that the
same result holds for irrational numbers of electrons. This proves that the energy is a
continuous function of the number of electrons, and justifies differentiation with respect
to electron number, providing a rigorous justification for the density-functional theo-
retic approaches to chemical concepts like the electronegativity and the Fukui function.
Similar results hold for properties other than the energy. Specific emphasis is placed on
molecular response properties associated with the density-functional theory of chemical
reactivity.

KEY WORDS: zero-temperature grand canonical ensemble, derivative discontinuity,
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1. Introduction

As density-functional theory (DFT) [1–4] has gained acceptance as a com-
putational chemistry method, many of the outstanding theoretical problems
underlying the theory have been overlooked as researchers aim instead to par-
ticipate in the glamorous task of functional development. When functional
development stagnates, the way forward is inevitably a return to the theoretical
underpinnings of DFT and, in particular, theoretical properties of exact density
functionals that are not fulfilled by present approximations. One such property
is the discontinuity in functional derivatives with respect to the electron den-
sity at integer numbers of electrons [5, 6], and another is the “linear mixing
law” that relates how observable properties of systems change as the number of
electrons changes [7]. Present functionals mimic neither behavior which, among
other things, leads to unreliable calculations of band gaps and functionals that
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fail badly for highly charged molecular species. Characterizing the behavior of
density functionals as the number of electrons changes, then, is an important
prerequisite for improving existing approximations.

Distressingly, some of the most elementary questions about how properties
depende on electron number still remain answered. In this paper, we address one
of the most fundamental possible questions: is the energy a continuous func-
tion of the number of electrons? That is, does a slight displacement of a system’s
electron density toward either its cation or anion always give a similarly slight
change in energy? One might presume that the energy is “obviously” continu-
ous in this way and, indeed, the entire edifice of the DFT of chemical reactivity
[8–11]—wherein differentiation with respect to the number of electrons is used
to define the electronegativity [12, 13], hardness[14–16], Fukui function [17–21],
and other properties—is based on this assumption. As the forthcoming analysis
shows, the reason that the energy is continuous is by no means trivial.

The analysis in this paper is based on the treatment of Ref. [7], which is
summarized and extended in section 2. In section 3, the implications of this anal-
ysis are discussed, with particular emphasis on the response properties used in
the DFT of chemical reactivity.

2. Mathematical results

2.1. Review

Reference [7] presents an especially simple approach to the fractional elec-
tron number problem. Unlike the common approaches based on the zero tem-
perature grand canonical ensemble [5, 6, 22], this approach does not introduce
a fictitious temperature and take the zero temperature limit. The basic idea is
to construct the zero temperature grand canonical ensemble one replica at a
time. Consider Q replicas of an N-electron molecule, with the replicas spaced far
enough apart so that the interaction between them can be neglected. If we add
P extra electrons to the supermolecule (P < Q), the ground-state energy of the
supermolecule will be P times the energy of the (N + 1)-electron molecule, plus
Q − P times the energy of the N-electron molecule:

Etotal = P E (N+1)

replica + (Q − P)E (N )

replica, (1)

where E (N )

replica is the N-electron ground-state energy of a single replica. However,
all of the replicas are identical, so they can be chosen to have the same energy,

E1 = E2 = · · · = EQ−1 = EQ . (2)

Because the replicas do not interact, the sum of the energy of the replicas must be
equal to the total energy and so, from equations (1) and (2), the energy of a replica is
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Eq = P

Q
E (N+1)

replica +
(

1 − P

Q

)
E (N )

replica. (3)

In equation (3) and what follows, lower-case letters (p, q, r, . . .) are used to indi-
cate the properties of a specific replica.

Equation (2) can be generalized to properties other than the energy:
because all the replicas are identical, they can be chosen to have identical prop-
erties.

A1 = A2 = · · · = AQ . (4)

If the property, A, is size consistent, then the total value of A is the sum of its values for the
noninteracting replicas, leading to an expression like equation (3)

Aq = P

Q
A(N+1)

replica +
(

1 − P

Q

)
A(N )

replica, (5)

where A(N )

replica =
〈
Ψ

(N )

replica

∣∣∣ Â∣∣∣Ψ(N )

replica

〉
is the value of the property in the N-elec-

tron ground state of a replica. Equation (5) holds, in particular, for the number
of electrons in a replica. Thus, all the replicas can be chosen to have equal num-
bers of electrons, and equation (3) can be used to define the value of the energy
for any rational number of electrons:

E

(
N+ P

Q

)
replica = P

Q
E (N+1)

replica +
(

1 − P

Q

)
E (N )

replica, 0 ≤ P ≤ Q. (6)

Equation (5) can be used to define the values of other size-consistent properties,

A

(
N+ P

Q

)
replica = P

Q
A(N+1)

replica +
(

1 − P

Q

)
A(N )

replica, 0 ≤ P ≤ Q. (7)

This argument is the essence of Ref. [7]. (The extension to operators other
than the energy is new, but it is a trivial corollary of that analysis.) This argu-
ment is only valid for rational numbers of electrons, since it requires that P and
Q be integers. One goal of this paper is to extend this analysis to irrational
numbers, so that the properties of a system with an irrational number of elec-
trons can be inferred. Doing this requires filling in the mathematical details that
underlie the preceding discussion.

2.2. Mathematical details: fractional electron number

Suppose that we are given a system where the electrons are bound by an
external potential v(r). This external potential is assumed to be local, so that,

lim︸︷︷︸
r→∞

v (r, θ, φ) = 0. (8)
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With such a potential, systems that are infinitely far apart do not interact. For
atoms and molecules the external potential is just the electron–nuclear potential,
which has the form

v(r) =
Natoms∑
α=1

−Zα∣∣r − Rα

∣∣ . (9)

Equation (8) is not always true; it is not true in the noninteracting limit of a
Kohn–Sham DFT calculation, for example, though there is no special problem
in that case because the identity is violated only on sets of zero measure [23–25].

Now, let us replicate our system, putting Q copies of our system at spatially
distinct points, X1,. . . ,XQ . Assume that all of the replicas are infinitely far apart:

1∣∣Xp − Xq

∣∣ = 0, 1 ≤ p, q ≤ Q; p �= q. (10)

This ensures that the replicas do not interact.
If we assign N electrons to each replica, then the Hamiltonian for a replica is

Ĥ (N )
q =

N∑
i=1

⎛
⎝−∇2

i

2
+ v

(
ri − Xq

)
+ 1

2

∑
j �=i

1∣∣ri − r j

∣∣
⎞
⎠. (11)

The N-electron ground-state wavefunction for this replica is obtained by solving
the electronic Schrödinger equation:

Ĥ (N )
q Ψ

(N )
q

(
r1, . . . , rN

)
= E (N )

replicaΨ
(N )
q

(
r1, . . . , rN

)
. (12)

Note that the energy does not depend on which replica we are considering, since
the energy is translationally invariant and the external potentials of the replicas
are identical except for translation by X1, X2, . . . , XQ . The wavefunctions of the
replicas are also identical up to a translation,

Ψ
(N )
q

(
r1, . . . , rN

)
= Ψ

(N )

replica

(
r1 − Xq , . . . , rN − Xq

)
. (13)

Now, let us add P electrons to the system, where 0≤P≤Q. The Hamiltonian for
the total N Q + P-electron system is then

Ĥ (N Q+P)

total =
N Q+P∑

i=1

⎛
⎝−∇2

i

2
+

Q∑
q=1

v
(

ri − Xq

)
+ 1

2

∑
j �=i

1∣∣ri − r j

∣∣
⎞
⎠. (14)

One possible ground state wavefunction for this system would be

Ψtotal

(
r1 . . . rQN+P

)
= A

(
Ψ

(N+1)

1 Ψ
(N+1)

2 · · · Ψ(N+1)
P Ψ

(N )

P+1Ψ
(N )

P+2 · · · Ψ(N )
Q

)
. (15)
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(A is the antisymmetrizer.) This wavefunction assigns N + 1 electrons to the
replicas centered at the first P locations (X1, . . . , XP) and N electrons to the next
Q − P replicas. This is a ground-state wavefunction for the system consisting of
Q replicas and P extra electrons, and the energy of this wavefunction is clearly

Etotal = E (N+1)

1 + E (N+1)

2 + · · · + E (N+1)
P + E (N )

P+1 + · · · E (N )
Q . (16)

Because the replicas are identical except for the number of electrons, we have

Etotal = P E (N+1)

replica + (Q − P) E (N )

replica. (17)

Assigning the extra electrons to the first P replicas is, of course, arbitrary.
Instead of using equation (15), one can sum over all possible ways of assigning
N + 1 electrons to P replicas and N electrons to the remaining Q − P replicas.
Thus

Ψtot,sym

(
r1 . . . rQN+P

)

= A

⎛
⎜⎜⎝
√

(Q − P)!P!
Q!

∑
κ1,κ2,...κQ={0,1}
κ1+κ2+···+κQ=P

Ψ
(N+κ1)
1 Ψ

(N+κ2)
2 · · · Ψ(N+κQ)

Q

⎞
⎟⎟⎠ . (18)

This is also one of the degenerate ground-state wavefunctions for the system.
This wavefunction treats all the replicas the same way and is thus symmetric with
respect to exchange of the coordinates of the replicas. When the supermolecule
is in the state described by equation (18), all of the replicas have the same prop-
erties. Thus, the number of electrons in each replica must be

( 1
Q

)
th of the total

number of electrons. That is,

N1 = N2 = · · · NQ = QN + P

Q
= N + P

Q
. (19)

Similarly, the energy of each replica must be
( 1

Q

)
th of the total energy. Using

equation (17), we have that

E1 = E2 = · · · = EQ = P

Q
E (N+1)

replica +
(

1 − P

Q

)
E (N )

replica. (20)

The total density of the system is

ρtot(r) =
Q∑

q=1

[(
1 − P

Q

)
ρ

(N )

replica

(
r − Xq

)
+ P

Q
ρ

(N+1)

replica

(
r − Xq

)]
, (21)

where ρ
(N )

replica

(
r − Xq

)
is the ground-state density for the N-electron system

centered at Xq . In general, this sort of relationship holds for any observable that
is size consistent.
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Two wavefunctions, Φp and Φq , are said to be strongly disjoint wavefunc-

tions if at any place, xiq
, where Φq

(
x1, r2, . . . xiq

. . . rNq

)
is not equal to zero,

Φp

(
x1, r ′

2, . . . xiq
. . . , r ′

Np

)
equals zero. This implies that

Φ
∗
p

(
x1, r ′

2, . . . , r
′
Np

)
â(x1)Φq

(
x1, r2 . . . , rNq

)
= 0 (22)

at every point in space for any operator, â
(

x1

)
, with finite norm. Equation

(22) is satisfied any time the wavefunctions are localized in regions of space that
are infinitely far apart; it is the natural generalization of the concept of strong
orthogonality [26],∫

Φp

(
x1, r2 . . . rNp

)
Φq

(
x1, r ′

2, . . . , r ′
Np

)
dx1 = 0. (23)

If two electronic systems are infinitely far apart, then the eigenfunctions of those
systems are strongly disjoint. (Strictly speaking, this applies only to bound states
of the subsystems; the results for continuum states may be more complicated.)

The formula for the properties of an individual replica is now derived. Con-
sider a simple one-electron operator,

Âtotal =
QN+P∑

i=1

â(ri ). (24)

Because the wavefunctions of the replicas are strongly disjoint, integrals between
N-electron wave functions on different centers vanish:∫ (

Ψ(N )
p

(
r1, . . . , rN−1, xN

))∗
â(xN )Ψ(N )

q

(
xN , rN+1, . . . r2N−1

)
dxN = 0,

∫ (
Ψ(N )

p

(
r1, . . . , rN−2, xN−1, xN

))∗
â(xN )Ψ(N )

q

(
xN−1, xN , rN+1 . . . r2N−2

)
dxN = 0,

...

∫ (
Ψ(N )

p

(
x1, . . . xN

))∗
â(xN )Ψ(N )

q

(
x1, . . . xN

)
dxN = 0.

(25)

Integrals between N-electron wavefunctions and N+1-electron wavefunctions also
vanish: ∫ (

Ψ
(N )
p

(
r1 . . . xN

))∗
â(xN )Ψ

(N+1)
q

(
xN , rN+1, . . . r2N

)
dxN = 0,

∫ (
Ψ

(N )
p

(
r1, . . . rN−2, xN−1, xN

))∗
â(xN )Ψ

(N+1)
q

(
xN−1, xN , rN+1, . . . r2N−1

)
dxN = 0,

...

∫ (
Ψ

(N )
p

(
x1 . . . xN

))∗
â(xN )Ψ

(N+1)
q

(
x1, . . . xN+1

)
dxN = 0.

(26)
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These identities imply that “cross terms” between different disjoint systems
vanish, so that〈

Ψtot,sym
(
r1 . . . rQN+P

)∣∣ Â∣∣Ψtot,sym
(
r1 . . . rQN+P

)〉

= (Q−P)!P!
Q!

∑
κ1,κ2,...κQ={0,1}
κ1+κ2+···+κQ=P

Q∑
q=1

〈
Ψ
(N+κq)
q

∣∣N+κq∑
i=1

â
(
ri

)∣∣Ψ(N+κq)
q

〉
.

(27)

This indicates that the value of a property for a composite system formed from
Q disjoint, noninteracting subsystems is the sum of the values of that property
for the subsystems.

The results for two-electron operators are similar. In analogy to equation
(8), one must have electrons that are infinitely far apart do not interact, that is:

lim︸︷︷︸∣∣ri −r j

∣∣
â
(

ri , r j

)
= 0. (28)

With this result, the interactions between electrons on different systems are zero:

∫ ⎡
⎣
(
Ψ

(N )
p

(
r1, . . . rN−1, xN

)
Ψ

(N )
q

(
xN+1, rN+2, . . . r2N

))∗

×â
(
xN , xN+1

)
Ψ

(N )
p

(
r1, . . . rN−1, xN

)
Ψ

(N )
q

(
xN+1, rN+2, . . . r2N

)
⎤
⎦ dxN dxN+1 = 0,

∫ ⎡
⎣
(
Ψ

(N )
p

(
r1, . . . rN−1, xN

)
Ψ

(N+1)
q

(
xN+1, rN+2, . . . r2N+1

))∗

×â
(
xN , xN+1

)
Ψ

(N )
p

(
r1, . . . rN−1, xN

)
Ψ

(N+1)
q

(
xN+1, rN+2, . . . r2N+1

)
⎤
⎦ dxN dxN+1 = 0.

(29)
This result can be easily extended to operators depending on larger numbers of
electrons, but only one- and two-electron operators are commonly considered in
quantum chemistry.

The quantum mechanical operator for the supermolecule can be
constructed from the quantum mechanical operators of its infinitely separated
replicas. The easiest way to do this is to define nonoverlapping regions of space
associated with each replica,

{
Ωq

}Q
q=1. One then defines the one-electron opera-

tors for a replica so that they do not affect the other portions of the supermol-
ecule:

âΩq

(
ri

) =
{

âq
(
ri

)
, ri ∈ Ωq ,

0, ri /∈ Ωq .
(30)

Two electron operators are defined similarly, with

âΩq

(
ri , r j

) =

⎧⎪⎨
⎪⎩

âq
(
ri , r j

)
, ri , r j ∈ Ωq ,

0, ri /∈ Ωq ,

0, r j /∈ Ωq .

(31)
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The quantum mechanical operator for the supermolecule is then the sum of the
operators for all the replicas,

Âtotal =
QN+P∑

i=1

Q∑
q=1

âΩq

(
ri

) + 1
2

QN+P∑
i=1

∑
j �=i

Q∑
q=1

âΩq

(
ri , r j

)
. (32)

With this definition of the properties of the supermolecule, the properties of the
supermolecule is always the sum of the properties of the replicas,

Atotal =
Q∑

q=1

Aq . (33)

If, as before, the replicas are chosen to be identical, then by the same argument
that was used for the energy, one has that

A1 = A2 = · · · = AQ = P

Q
A(N+1)

replica +
(

1 − P

Q

)
A(N )

replica. (34)

Equation (33) is usually discussed in the context of size consistency. For a
size consistent system, the properties of a supermolecule are obtained by adding
together the the properties of the subsystems. Mathematically:

The property A is said to be size consistent if, for a supermolecule that comprises Q infinitely
separated subsystems with wavefunctions Φ1,Φ2, . . . ,ΦQ , the total value of the property in the
supermolecule is the sum of the values of the properties in the subsystems, as in equation (33).

Conceptually, if a property is size consistent, then it is “local.” That is,
given a molecule, the size-consistent properties of that molecule do not depend
on other electronic systems that are infinitely far away. For example, if one
chooses the external potential of a Neon atom located at the origin to be

vNe(r) = −10
r

(35)

then the electron–nuclear attraction energy is size consistent. However, if one
chooses the external potential to be

vNe(r) = −10
r

+ k (36)

then the electron–nuclear attraction energy is not size consistent. For example,
adding a Helium atom infinitely far from the Neon atom would change the elec-
tron–nuclear attraction energy by 2k—shifting the energy upwards k units for
each electron in the Helium atom. This nonphysical behavior occurs because
vΩNe

(r) = vNe(r) if one uses equation (35) for the external potential, but
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not if one uses equation (36). There are also chemically important examples of
nonsize-consistent operators. For example, the moments of the electron density,

µkx kykz =
∫

(x − x0)
kx (y − y0)

ky (z − z0)
kz ρ(r)dr (37)

are not size consistent unless kx , ky, kz ≤ 0. In fact, these moments are usually
infinity for a supermolecule, because the function (x − x0)

kx (y − y0)
ky (z − z0)

kz

diverges asymptotically whenever any of the exponents are positive. This reflects
the fact that the moments of the electron density are not size consistent: if one
takes a molecule and replicates it Q times over, then the moments of the supra-
molecular electron density are not simply the sums of the moments of the indi-
vidual replicas. Computing molecular multipole moments using the replication
method requires using the atom-truncated operator defined through equation
(30) and using a different center (x0, y0, z0), for the moment expression in each
replica.

2.3. Mathematical details: irrational electron number

The preceding analysis defines the energy and other properties of systems
with rational numbers of electrons, N + P

Q , where N, P, and Q are all integers
and P≤Q. The analysis is readily extended to irrational numbers of electrons,
however. For simplicity, let us first consider the case of three replicas with one
surplus electron. (Q = 3; P = 1.) The symmetric form of the ground-state
wavefunction is

Ψtot,sym = A

⎛
⎜⎜⎜⎝
√

1
3

⎛
⎜⎜⎜⎝

Ψ
(N+1)

1 Ψ
(N )

2 Ψ
(N )

3

+Ψ
(N )

1 Ψ
(N+1)

2 Ψ

(
N

)
3

+Ψ
(N )

1 Ψ
(N )

2 Ψ
(N+1)

3

⎞
⎟⎟⎟⎠

⎞
⎟⎟⎟⎠ . (38)

Another one of the degenerate ground-state wavefunction has the form:

Ψtot,ε = A

⎛
⎜⎜⎜⎝
√

1
3

⎛
⎜⎜⎜⎝

(√
1 + ε

)
Ψ

(N+1)

1 Ψ
(N )

2 Ψ
(N )

3

+ (√
1 − ε

)
Ψ

(N )

1 Ψ
(N+1)

2 Ψ
(N )

3

+Ψ
(N )

1 Ψ
(N )

2 Ψ
(N+1)

3

⎞
⎟⎟⎟⎠

⎞
⎟⎟⎟⎠ , (39)

where 0 ≤ ε ≤ 1. This state corresponds to a situation where the first replica has
N + 1+ε

3 electrons, the second replica has N + 1−ε
3 electrons, and the third replica
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has N + 1
3 electrons. Clearly this general construction can be readily extended to

additional replicas. If one does so, then one obtains the energy expression:

Etotal = P E (N+1)

replica + (Q − P) E (N )

replica

= (Q − 2) E

(
N+ P

Q

)
replica + E

(
N+ P+ε

Q

)
replica + E

(
N+ P−ε

Q

)
replica .

(40)

Because ε can be an irrational number, this provides some information about the
energy of a system with an irrational number of electrons, specifically, that

E

(
N+ P+ε

Q

)
replica + E

(
N+ P−ε

Q

)
replica = 2E

(
N+ P

Q

)
replica

= 2
(

P
Q E (N+1)

replica +
(

1 − P
Q

)
E (N )

replica

) (41)

When ε is a rational number, this equation agrees with the results in Ref. [7].

Equation (41) expresses the fact that when N ≤ N + P
Q −δ ≤ N + P

Q ≤N + P
Q +

δ ≤ N +1, then the average energy the systems with N + P
Q +δ and N + P

Q −δ elec-
trons is equal to the energy of the system with the average number of electrons,
i.e.,

E

(
N+ P

Q +δ
)

replica + E

(
N+ P

Q −δ
)

replica

2
= E

(
N+ P

Q

)
replica . (42)

This is true for both rational and irrational values of δ as long as N + P
Q +δ≤N +

1 and N + P
Q − δ≥N .

Equation (42) is a useful relation for the sum of the energies of two states
with different numbers of electrons. For systems with a rational number of elec-
trons, there is also a result for the difference in energy between two states with
different numbers of electrons, namely

E

(
N+ P

Q

)
replica − E

(
N+ P ′

Q′
)

replica
P
Q − P ′

Q′
= E (N+1)

replica − E (N )

replica. (43)

This follows directly from equation (20) and expresses the fact that a plot of
energy versus electron number is a collection of straight line segments (at least
for rational numbers of electrons).

There is an analogous result for irrational numbers of electrons. Motivated
by the form of equation (43), consider a number of electrons, N+ P ′

Q′ +δ′, between
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the rational numbers N + P ′
Q′ and N + P

Q . Define the distance between this number
and N + P

Q as

δ = N + P

Q
−

(
N + P ′

Q′ + δ′
)

(44)

so that

N ≤ N + P ′

Q′ − δ′≤N + P ′

Q′

≤ N + P ′

Q′ + δ′ = N + P

Q
− δ

≤ N + P

Q
≤N + P

Q
+ δ

≤ N + 1. (45)

Analogous to equation (42), one has

E

(
N+ P ′

Q′ +δ′
)

replica + E

(
N+ P ′

Q′ −δ′
)

replica

2
= E

(
N+ P ′

Q′
)

replica . (46)

Subtracting equation (46) from equation (42) and using equation (44) implies
that

E

(
N+ P

Q +δ
)

replica − E

(
N+ P ′

Q′ −δ′
)

replica

2
= E

(
N+ P

Q

)
replica − E

(
N+ P ′

Q′
)

replica . (47)

Dividing both sides by P
Q − P ′

Q′ and noting that P
Q − P ′

Q′ = δ + δ′ (cf. equation
(44)), one has that

E

(
N+ P

Q +δ
)

replica − E

(
N+ P ′

Q′ −δ′
)

replica

P
Q + δ −

(
P ′
Q′ − δ′

) =
E

(
N+ P

Q

)
replica − E

(
N+ P ′

Q′
)

replica
P
Q − P ′

Q′

= E (N+1)

replica − E (N )

replica. (48)

The second line in this expression follows from equation (43). When δ and δ′ are
rational numbers, this equation is equivalent to (43). When δ and δ′ are irratio-
nal numbers, this equation indicates that the slope of the E versus N curve is the
same for rational and irrational numbers.
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Combined with equation (42), this actually implies that the energy is a
continuous function of the electron number. To see this, note that because the E
versus N curve has the slope E (N+1)

replica − E (N )

replica, then

E

(
N+ P

Q +δ
)

replica = E

(
N+ P

Q −δ
)

replica + 2δ
(

E (N+1)

replica − E (N )

replica

)
. (49)

Inserting this into equation (42) gives:

E

(
N+ P

Q −δ
)

replica = E

(
N+ P

Q

)
replica − δ

(
E (N+1)

replica − E (N )

replica

)

=
(

P

Q
− δ

)
E (N+1)

replica +
(

1 −
(

P

Q
− δ

))
E (N )

replica. (50)

This equation is the direct generalization of equation (20) to irrational numbers.
Since δ can be either rational or irrational, we can simplify this expression to

E (N+δ)

replica = δE (N+1)

replica + (1 − δ) E (N )

replica, (51)

where 0≤δ≤1. This establishes that the “straight line” result for the energy ver-
sus the number of electrons is valid not only for rational numbers of electrons,
but also for irrational numbers of electrons. It also establishes that the energy is
a continuous function of the number of electrons. Moreover, the derivative of the
energy (the chemical potential) [12] is piecewise constant, with discontinuities at
integer electron number.

3. Chemical reactivity indicators

The previous section established that the energy is a continuous function of
the number of electrons and can be described by the expression

E (N+x)

replica = x E (N+1)

replica + (1 − x) E (N )

replica, x ∈ [0, 1] , (52)

where x is any real number between zero and one, inclusive. This result can
clearly be extended to apply to any size-consistent property of the system:

A(N+x)

replica = x A(N+1)

replica + (1 − x) A(N )

replica, x ∈ [0, 1] . (53)

Size-consistent properties are also continuous with respect to electron number.
The dependence of the energy and other properties on the number of

electrons has received the greatest scrutiny in the DFT of chemical reactivity,
which is often called “conceptual DFT” [8–11]. When two molecules approach,
they perturb each other. If those perturbations are energetically favorable
(or at least not especially unfavorable), then a chemical reaction is likely to
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occur. In this way, the chemical reactivity preferences of a molecule can be pre-
dicted by studying how a molecule’s energy responds to various perturbations
(which are chosen to model the approach of different reagents) [11, 20, 27–30].
Response functions of the energy emerge as natural reactivity indicators.

In the DFT of chemical reactivity, one ordinarily focuses on how the molec-
ular energy changes with respect to changes in the external potential (due to the
approach of an attacking reagent) and changes in the number of electrons (due
to electron transfer to/from an attacking reagent). For a system with a nonde-
generate ground state, the changes with respect to the external potential can be
obtained using simple perturbation theory. The first-order change is the electron
density:

ρ(N )(r) =
(

δE (N )

δv(r)

)
N

(54)

and the second-order change is the linear-response (or polarizability) kernel,

P(N )
(

r, r
′) =

(
δ2 E (N )

δv(r
′
)δv(r)

)
N

=
(

δ2ρ(N )(r)

δv(r
′
)

)
N

. (55)

Higher order response functions are rarely considered. When they need to be
considered, they should probably be treated using “path integral” formulae
[11, 27].

Density functional reactivity theory is usually used to describe acid/base
chemistry, and its greatest successes have come from describing regioselectivi-
ty in acid/base reactions [17, 18, 31], the electronegativity equalization principle
[12, 32], and the Hard/Soft Acid/Base principle [33–39]. Indeed, one may argue
that the only convincing explanations of the electronegativity equalization princi-
ple and the Hard/Soft Acid/Base principles use DFT-based arguments. The DFT
perspective is also useful when orbital relaxation or electron correlation plays
a decisive role in the chemical reactivity profile of a reagent [40–43], because
in those cases arguments based on conventional molecular–orbital and valence-
bond theory tend to fail.

When using DFT to describe acid/base chemistry, the role of electron trans-
fer is critical and cannot be neglected. This requires determining how the energy,
electron density, and linear response kernel depend on the number of electrons.
The appropriate expressions are readily obtained using equations (52) and (53).
If N≥1 is assumed to be the integer number of electrons closest to the number
of electrons of interest, then the energy has the expression:

E (N+x) =
{−x E (N−1) + (1 + x)E (N ), −1≤x≤0,

(1 − x)E (N ) + x E (N+1), 0≤x≤1.
(56)
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The electron density and the linear response kernels are size-consistent properties,
and so there are similar forms for these properties:

ρ(N+x)(r) =
{−xρ(N−1)(r) + (1 + x) ρ(N )(r), −1≤x≤0,

(1 − x) ρ(N )(r) + xρ(N+1)(r), 0≤x≤1,
(57)

P(N+x)
(

r; r
′) =

⎧⎨
⎩

−x P(N−1)
(

r; r
′) + (1 + x) P(N )

(
r; r

′)
, −1≤x≤0,

(1 − x) P(N )
(

r; r
′) + x P(N+1)

(
r; r

′)
, 0≤x≤1.

(58)

In order to describe how these properties change when an electron donor
or an electron acceptor approaches the molecule, one differentiates with respect
to the number of electrons. The derivative of the energy with respect to electron
number is the electronic chemical potential [5, 12]:

µ(N+x) =
(

∂ E (M)

∂ M

)
v(r);M=N+x

,

µ(N+x) =
{

µ− = E (N−1) − E (N ), −1≤x≤0,

µ+ = E (N ) − E (N+1), 0≤x≤1.

(59)

Note that when the number of electrons is an integer (x = 0), the derivative does
not exist. The derivative from above (µ+) and the derivative from below (µ−)

must be used instead.
The derivative of the electron density with respect to the number of elec-

trons is the Fukui function [17–19].

f (N+x)(r) =
(

∂ρ(M)(r)
∂ M

)
v(r);M=N+x

,

f (N+x)(r) =
{

f −(r) = ρ(N )(r) − ρ(N−1)(r), −1≤x≤0,

f +(r) = ρ(N+1)(r) − ρ(N )(r), 0≤x≤1.

(60)

The Fukui function is a key indicator of regioselectivity. The derivatives of the
polarizability kernel are similarly obtained.

These formulas can be written more compactly using the Heaviside step
function,

Θ (x) =
{

0, x < 0,

1, x > 0.
(61)

The chemical potential can then be written as

µ(N+x) = µ− + Θ (x)
(
µ+ − µ−) , −1≤x≤1. (62)

Similarly, the Fukui function can be written as

f (N+x)(r) = f −(r) + Θ (x)
(

f +(r) − f −(r)
)

, −1≤x≤1. (63)
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These expressions are especially useful when higher-order derivatives with respect
to the number of electrons need to be taken.

The second derivative of the energy with respect to the number of electrons
is the chemical hardness [14],

η =
(

∂2 E (M)

∂M2

)
v(r)

, (64)

which is the key concept underlying the Hard/Soft Acid/Base [33–39] and Maxi-
mum Hardness Principles [16, 20, 44]. The derivative of the Heaviside function is
the Dirac delta function:

Θ(x) =
y∫

0

δ(y)dy, (65)

dΘ(x)

dx
= δ(x).

Using this relation, one finds the following expression for the chemical hardness

η(N+x) =
(

E (N+1) − 2E (N ) + E (N−1)
)

δ(x), −1≤x≤1,

= (
µ+ − µ−) δ(x). (66)

The replica model advocated in this paper helps explain why systems with
noninteger electron number have zero hardness: applying an infinitesimal per-
turbation will break the degeneracy between the replicas in the supermolecule,
inducing electron transfer from the replicas that were destabilized by the per-
turbation to the replicas that were stabilized by the perturbation. This extreme
instability is associated with zero hardness and infinite polarizability.

In recent months, there has been a large amount of interest in the second
derivative of the density with respect to electron number,

� f (M)(r) =
(

∂2ρ(M)(r)
∂M2

)
v(r)

. (67)

This “dual descriptor” for describing chemical reactions seems to play a key role
in describing reactions that are difficult to describe using electrostatic or elec-
tron transfer effects [45–47]. For example, the “dual descriptor” can be used to
describe the Woodward–Hoffmann rules [47, 48] and the preference for the endo
or exo conformers in Diels–Alder reactions [49]. The dual descriptor can be com-
puted using a formula analogous to equation (66),

� f (N+x)(r) =
(
ρ(N+1)(r) − 2ρ(N )(r) + ρ(N−1)(r)

)
δ(x), −1≤x≤1,

=
(

f +(r) − f −(r)
)

δ(x). (68)
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Equations (66) and (68) for the hardness and the dual descriptor are the basis
for many practical computational schemes, although the δ-function dependence
is typically ignored. When the δ-function dependence is ignored one is effectively
“smoothing over” the derivative discontinuity with respect to the number of
electrons.

Except for the equation for the dual descriptor, equation (68), all of these
results can be found in the literature. In most cases, the results were known to
the research community long before they ever appeared in print. For example,
the equations for the Fukui function, equation (60), were certainly known in
1982 [5], although an explicit statement expressing the fact that “the finite differ-
ence approximation is exact” seems not to appear until much later, in a review
article [19].

4. Discussion

Section 2 of this paper establishes the “linear mixing rule” for noninteger
number of electrons,

A(N+δ)

replica = x A(N+1)

replica + (1 − x) A(N )

replica, 0≤x≤1 (69)

and size-consistent properties, A. This extends the analysis in Ref. [7], which
focused on the energy and addressed only the case where x was a rational num-
ber. The extension to other size-consistent properties is not unexpected (indeed,
it is implicit in many previous treatments). The extension to irrational numbers
of electrons is an interesting mathematical exercise, but the results are just as one
would expect: there is no reason to expect that a system’s properties would toggle
between qualitatively different values based solely on whether the total number
of electrons was rational or irrational. The major contribution of section 2, then,
is to “tie up” of some loose mathematical ends left behind in Ref. [7]. The most
important “loose end” is to prove the continuity of the energy (and other size
consistent properties) with respect to the number of electrons. In fact, molecular
properties are linear functions of electron number except for integer numbers of
electrons. This smoothness allows one to differentiate properties with respect to
the number of electrons, as is commonly done in the density functional theory
of chemical reactivity.

In section 3, formulas for chemical reactivity indicators are derived. None
of these results is unexpected, and results of this sort have appeared scat-
tered throughout the literature, though most of those formulas were derived by
taking the zero temperature limit of the grand canonical ensemble. The pres-
ent approach is more direct, less error prone, and probably more instructive.
Occasionally people ask whether it is acceptable to choose an ansatz in which
there are no derivative discontinuities. Based on this analysis, the answer is
“no.” While one may argue that the zerotemperature grand canonical ensemble
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is an ad hoc construction for fractional electron number, no such objection
can be raised to the present construction. One can construct an ansatz where
molecular properties do not vary in the piecewise linear fashion expressed in
equation (69), but it requires defining the properties with nonsize-consistent
operators. If one uses nonsize-consistent operators, then the properties of a mol-
ecule will depend on the properties of another molecule an infinite distance away.
In this sense, “size consistency” is a choice, and not a requirement. It seems intu-
itively reasonable, however, to prefer theoretical approaches where the response
of a molecule to accepting/donating electrons to another molecule that is infi-
nitely far away does not depend on the identity of the other molecule.

Equations (63) and (68) seem to be new but, in light of the previous known
results, these expressions are not very surprising.

When one combines the “mathematical” results in section 2 with the
“chemical” results in section 3, interesting interpretations emerge. The first thing
that one notices is that the analysis in section 2 is critically dependent on the
size consistency of the properties under consideration. This has a simple inter-
pretation: given a molecule, B, its properties should not change if one introduces
another molecule, C, an infinite distance away. This “obvious” statement is true
for size-consistent properties, but not for nonsize-consistent properties like, for
example, the expectation value of the “shifted Neon” potential in equation (36).
All of the indicators commonly used in density functional theoretic studies of
chemical reactivity are size consistent.

Parr has emphasized that the dependence of the energy, and other proper-
ties, on the number of electrons can be likened to a phase transition [50]. The
Schrödinger equation defines the properties of systems with integer numbers of
electrons; these are “pure states.” If one considers the chemical potential and the
external potential to be the variables that control the state of the system, then
the “pure state” with N electrons is stable as long as the chemical potential is in
the range

µ− < µ < µ+, (70)

where µ− and µ+ are the derivatives from below and above (cf. equation (59))
and are identified as minus the vertical ionization potential and minus the ver-
tical electron affinity, respectively. If one lowers the chemical potential so that it
is equal to µ−, then a phase transition occurs and the system becomes a “mixed
state” where the N-electron state is mixed with the N − 1-electron state. Dur-
ing the phase transition, the chemical potential and the external potential are
constant, and one needs an additional variable (here, the number of electrons)
to describe the system and determine its properties. This is very similar to what
happens in an ordinary phase diagram.

Similarly, if one uses the number of electrons and the external potential
to define the states, then the size-consistent properties of the system change
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smoothly (linearly!) with respect to the number of electrons until an integer
number of electrons is encountered. At that point, the way the properties of the
system change with respect to further decreases/increases in the number of elec-
trons changes abruptly and discontinuously, just like the properties of a liquid
change abruptly when it solidifies or vaporizes.

Finally, it should be emphasized that when one considers an atom or a
molecular fragment embedded in a reacting system, the analysis presented here is
not really appropriate. In those cases, the system in question interacts in a highly
specific way with its surroundings, and the identity of the source/sink of the elec-
trons that are donated to/accepted from the system is important. That is, the
exact analysis presented here is most appropriate for isolated molecules and mol-
ecules in low-density enviroments. (Very roughly, gas phase chemistry.) For sys-
tems in condensed phases, a different approach is needed [51–55]. Exactly what
that different approach should be is still a subject of debate.
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